Allocation and Validation of the Second Revision of the International Staging System in the ICARIA-MM and IKEMA Studies

Aurore Perrot¹, Paul Richardson², Joseph Mikhael³, Thomas Martin⁴, Meral Beksaç⁵, Ivan Špička⁶, Marcelo Capra⁷, Mattia D'Agostino⁸, Pieter Sonneveld⁹, Kamlesh Bisht¹⁰, Taro Fukao¹⁰, Rick Zhang¹⁰, Keisuke Tada¹¹, Christina Tekle¹⁰, Sandrine Macé¹², Zandra Klippel¹⁰, Helgi van de Velde¹⁰, Philippe Moreau¹³

¹CHU de Toulouse, IUCT-O, Université de Toulouse, UPS, Service d'Hématologie, Toulouse, France; ²Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ³Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute, City of Hope Cancer Center, Phoenix, AZ, USA; ⁴Department of Medicine, University of California, San Francisco, CA, USA; ⁵Department of Hematology, Ankara University, Ankara, Turkey; ⁶General Faculty Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic; ⁷Centro Integrado de Hematologia e Oncologia, Hospital Mãe de Deus, Porto Alegre, Brazil; ⁸Struttura Complessa (SC) Ematologia, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Turin, Italy; ⁹Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands; ¹⁰Sanofi, Cambridge, MA, USA; ¹¹Sanofi, Tokyo, Japan; ¹²Sanofi, Chilly-Mazarin, France; ¹³Hematology Department, CHU Nantes, Nantes, France

Poster presented at the European Hematology Association (EHA) 2023 Hybrid Congress, Frankfurt, Germany and online, June 8–11, 2023

Disclaimer

- Poster presented at the European Hematology Association (EHA) 2023 Hybrid Congress, Frankfurt, Germany and online, June 8–11, 2023.
- Some information may not be consistent with the approved product labeling for the product(s) being discussed; this
 information may relate to the indication or use, dosage and administration, patient population, combination use, or other
 potential unapproved uses. No conclusions regarding safety and efficacy can be made for such uses.

Poster presented at EHA 2023 Hybrid Congress

Allocation and Validation of the Second Revision of the International Staging System in the ICARIA-MM and IKEMA Studies

Aurore Perrot, Paul Richardson', Joseph Mikhael', Thomas Martin', Maral Beksac', Ivan Špička', Marcelo Capra', Mattia D'Agostino', Pieter Sonneveld', Kamlesh Bisht'', Taro Fukao'', Rick Zhang'', Keisuke Tada'', Christina Tekle'', Sandrine Macé¹⁰, Zandra Kippel'', Helgi van de Velde'', Philippe Moreau¹⁰ (Pri J Rubus UCC'), Universit de Toubus (J'S, Sovio Friendings Toubus, France, Neurol Lagor Moligh Myeins Cheel, Despite Alegie Alegie Cheely Despite (Joseph Moles and Cheely), Philippe Moreau¹⁰ (Pri J Rubus UCC'), Universit de Toubus (J'S, Sovio Friendings Toubus, France, Neurol Lagor Moligh Myeins Cheel, Despite J Rubus (Jacob Boston, M, US, V), Agated Cancer Fraesen' and Dio g Discovery Transitional Genome Research Institut, Cheel (Jeseph Care), Cale (Jeseph Moles), Anno Campes and Discover Fraesen, Az USA, Caperator at Monton, Universit of Caleron, Lano, Chael, Caleron, Caleron, Caleron, Fraesen, Caleron, Cal

Introduction

- In 2015, the International Staging System¹ (ISS) underwent a revision² (R-ISS) to include certain high-risk chromosomal abnormalities as prognostic factors
- Recently, the R-ISS was further revised³ (second revision of the ISS [R2-ISS]), to include 1q21+ and account for the additive prognostic significance of having multiple risk factors present
 - R2-ISS improved the ability to discriminate between the large group of patients deemed "intermediate-risk" by the R-ISS by splitting this group into low-intermediate (Stage II) and intermediate-high (Stage III)
- R2-ISS was validated using data from clinical trials of patients with newly diagnosed multiple myeloma (MM),³ but has yet to be validated in patients with relapsed/refractory MM (RRMM) or in patients treated with monoclonal antibodies (mAb)
- Isatuximab (Isa) is an anti-CD38 mAb approved for use in multiple countries⁴⁻⁶ to treat adults with RRMM when given in combination with either pomalidomide-dexamethasone (Pd) or carfilzomib-dexamethasone (Kd)
- We sought to validate the prognostic value of the R2-ISS among patients with RRMM who were treated in the Phase 3 ICARIA-MM (Isa-Pd vs Pd) and IKEMA (Isa-Kd vs Kd) studies, results of which have been previously reported⁷⁻¹⁰
 - The impact of early relapse on R2-ISS staging was also evaluated
- We also aimed to examine the benefit of Isa-based triplet therapy (Isa-Pd, Isa-Kd) vs doublet therapy (Pd, Kd), by R2-ISS stage

^{1.} Greipp PR, et al. J Clin Oncol. 2005;23(15):3412–20. 2. Palumbo A, et al. J Clin Oncol. 2015;33(26):2863–9. 3. D'Agostino M, et al. J Clin Oncol. 2022;40(29):3406–18. 4. Sarclisa[®] (isatuximab-irfc). Sanofi-Aventis U.S. LLC; 2022. 5. European Medicines Agency (EMA). Medicines. Sarclisa. 2022. 6. Sarclisa[®] (isatuximab): Sanofi Co. Ltd., Nishi Shinjuku, Tokyo; 2021.

^{7.} Attal M, et al. Lancet. 2019;394(10214):2096–107. 8. Richardson PG, et al. Lancet Oncol. 2022;23(3):416–27. 9. Moreau P, et al. Lancet. 2021;397(10292):2361–71.

^{10.} Moreau P, et al. Ann Oncol. 2022;33(6):664-5.

Methods (1/2)

- Pooled patients from the treatment (Isa-based triplet) and control (doublet) arms of ICARIA-MM (N=307) or IKEMA (N=302) were re-allocated into R2-ISS stage using the scoring strategy outlined by D'Agostino et al³
 - Values were assigned to individual risk factors: ISS Stage II (1.0); ISS Stage III (1.5); lactate dehydrogenase greater than the upper limit of normal (1.0); del(17p) present (1.0); t(4;14) present (1.0); and 1q21+ present (0.5)
 - The sum of risk factor values was used to determine R2-ISS stage (Table 1)
- To minimize the number of patients deemed not classifiable, an allowance was made for missing data when the sum of available risk factors reached a certain threshold

Table 1. Risk factor scoring strategy to determineR2-ISS stage

Total risk factor score	R2-ISS stage
0	I
0.5–1.0	Ш
1.5–2.5	*
3.0–5.0	IV [†]

*If patients had 1 missing risk factor, and the missing risk factor was not ISS stage, and the total score of existing non-missing risk factors was 1.5, then R2-ISS was classified as Stage III irrespective of the score value assigned to the missing risk factor. [†]If the total score of non-missing risk factors was at least 3.0, patients were designated as R2-ISS Stage IV, irrespective of the number of missing risk factors.

ISS, International Staging System; R2-ISS; second revision of the ISS

3. D'Agostino M, et al. J Clin Oncol. 2022;40(29):3406-18.

Methods (2/2)

- Early relapse (includes RRMM; excludes primary refractory) was defined as follows:
 - Relapsed <12 months from initiation of the most recent line of therapy for patients with ≥2 prior lines of therapy
 - Relapsed <18 months for patients with 1 prior line of therapy
 - Relapsed <12 months from autologous stem cell transplantation
- Progression-free survival (PFS), according to disease assessment by an independent review committee, was the primary endpoint (ICARIA-MM data cutoff Oct 11, 2018; IKEMA data cutoff Jan 14, 2022)
- Overall survival (OS) was included as an exploratory endpoint (ICARIA-MM data cutoff Jan 27, 2022; IKEMA data cutoff Jan 14, 2022 [immature IKEMA OS data])
- The Kaplan-Meier method was used to construct validation curves by R2-ISS stage and to examine outcomes by Isa-based triplet vs doublet
- Hazard ratios (HRs) and corresponding confidence intervals (CIs) were estimated using the Cox proportional hazards model

Results (1/8)

- Classification of study participants by risk factors considered for R2-ISS staging, and by re-allocation into R2-ISS stage, is shown in Table 2
 - More ICARIA-MM participants (30.9%) than IKEMA participants (11.9%) were missing 1q21+ data. This was due to the retrospective nature of 1q21+ assessment in ICARIA-MM (due to lack of leftover material and patient consent withdrawal) compared with the prospective analysis in IKEMA
- Of the 294 patients with early relapse, 21 were reclassified as R2-ISS Stage I, 51 as R2-ISS Stage II, 114 as R2-ISS Stage III, 35 as Stage IV, and 73 were not classified (Table 2)
- Compared with the whole population, more patients with early relapse were classified as R2-ISS Stages III and IV (51% vs 42%) than R2-ISS Stages I and II (24% vs 33%) (Table 2)

		. Dusch					2 100 300111g ui	iu Suim		112 100	Oluge		
Patient characteristic, n (%)	ICARIA-MM			IKEMA				ICARIA-MM			IKEMA		
	lsa-Pd (n=154)	Pd (n=153)	All (N=307)	lsa-Kd (n=179)	Kd (n=123)	All (N=302)	Patient characteristic, n (%)	lsa-Pd (n=154)	Pd (n=153)	All (N=307)	lsa-Kd (n=179)	Kd (n=123)	All (N=302)
ISS stage at study entry							1a21+†						
Stage I	62 (40.3)	51 (33.3)	113 (36.8)	89 (49.7)	71 (57.7)	160 (53.0)	Present	76 (49 4)	52 (34 0)	128 (41 7)	75 (41 9)	52 (42 3)	127 (42 1)
Stage II	55 (35.7)	56 (36.6)	111 (36.2)	63 (35.2)	31 (25.2)	94 (31.1)	Absent	38 (24 7)	46 (30 1)	84 (27 4)	84 (46.9)	55 (AA 7)	139 (46.0)
Stage III	34 (22.1)	43 (28.1)	77 (25.1)	26 (14.5)	20 (16.3)	46 (15.2)	Linknown or missing	40 (26 0)	FF (35.0)	05 (20.0)	20(11.2)	16 (12 0)	26 (11 0)
Unknown	3 (1.9)	3 (2.0)	6 (2.0)	1 (0.6)	1 (0.8)	2 (0.7)		40 (20.0)	55 (55.9)	95 (30.9)	20 (11.2)	10 (13.0)	30 (11.9)
del(17p)*							RZ-155 stage		o (= o)	00 (0 T)	o		40 (45 0)
Present	14 (9.1)	23 (15.0)	37 (12.1)	18 (10.1)	16 (13.0)	34 (11.3)	Stage I	11 (7.1)	9 (5.9)	20 (6.5)	31 (17.3)	17 (13.8)	48 (15.9)
Absent	118 (76.6)	95 (62.1)	213 (69.4)	143 (79.9)	96 (78.0)	239 (79.1)	Stage II	27 (17.5)	24 (15.7)	51 (16.6)	47 (26.3)	38 (30.9)	85 (28.1)
Unknown or missing	22 (14 3)	35 (22.9)	57 (18.6)	18 (10 1)	11 (8.9)	29 (9.6)	Stage III	52 (33.8)	47 (30.7)	99 (32.2)	68 (38.0)	37 (30.1)	105 (34.8)
	 (11.0)	00 (22:0)	01 (10.0)	10 (10.1)	(0.0)	20 (0.0)	Stage IV	16 (10.4)	18 (11.8)	34 (11.1)	11 (6.1)	10 (8.1)	21 (7.0)
≤ UI N	106 (68 8)	102 (66 7)	208 (67 8)	137 (76 5)	97 (79 5)	234 (77 7)	Not classified	48 (31.2)	55 (35.9)	103 (33.6)	22 (12.3)	21 (17.1)	43 (14.2)
> UI N	48 (31 2)	51 (33 3)	99 (32 2)	42 (23 5)	25 (20.5)	67 (22.3)	R2-ISS stage for patient	s with early r	elapse				
Missing	0	0	0	0	1 (<0.1)	1 (<0.1)	Stage I	6 (6.5)	5 (5.3)	11 (5.9)	5 (8.2)	5 (10.9)	10 (9.3)
t(4;14)*							Stage II	12 (12.9)	12 (12.8)	24 (12.8)	15 (24.6)	12 (26.1)	27 (25.2)
Present	12 (7.8)	14 (9.2)	26 (8.5)	22 (12.3)	20 (16.3)	42 (13.9)	Stage III	36 (38.7)	30 (31.9)	66 (35.3)	27 (44.3)	21 (45.7)	48 (44.9)
Absent	119 (77.3)	101 (66.0)	220 (71.7)	137 (76.5)	89 (72.4)	226 (74.8)	Stage IV	10 (10.8)	14 (14.9)	24 (12.8)	7 (11.5)	4 (8.7)	11 (10.3)
Unknown or missing	23 (14.9)	38 (24.8)	61 (19.9)	20 (11.2)	14 (11.4)	34 (11.3)	Not classified	29 (31 2)	33 (35 1)	62 (33 2)	7 (11 5)	4 (87)	11 (10.3)

Table 2. Baseline risk factors considered for R2-ISS scoring and summary of R2-ISS Stage

*del(17p) and t(4;14) were assessed during screening for ICARIA-MM and IKEMA by a central laboratory with a cut-off of 50% and 30%, respectively[†]1q21+ (cut-off of 30%) was assessed by a central laboratory prospectively during screening for IKEMA and retrospectively for ICARIA-MM; [‡]LDH assessment at baseline for IKEMA: Isa-Kd (n=137); Kd (n=122); All (n=301)

d, dexamethasone; Isa, isatuximab; ISS, International Staging System; K, carfilzomib; LDH, lactate dehydrogenase; P, pomalidomide; R2-ISS, second revision of the ISS; ULN, upper limit of normal

Results (3/8)

- Of the 609 enrollees, 68 were reclassified as R2-ISS Stage I, 136 as R2-ISS Stage II, 204 as R2-ISS Stage III, 55 as Stage IV, and 146 were not classified
 - The distribution of single risk factors present among patients within each R2-ISS stage is shown in **Table 3**

	R2-ISS stage								
Risk factor, n (%)	Stage I (n=68)	Stage II (n=136)	Stage III (n=204)	Stage IV (n=55)	Not classified (n=146)	All (N=609)			
No risk factors present	68 (100)	0	0	0	0	68 (11.2)			
ISS Stage II	0	48 (35.3)	89 (43.6)	15 (27.3)	53 (36.3)	205 (33.7)			
ISS Stage III	0	0	62 (30.4)	39 (70.9)	22 (15.1)	123 (20.2)			
LDH >ULN	0	19 (14.0)	58 (28.4)	47 (85.5)	42 (28.8)	166 (27.3)			
del(17p)* present	0	10 (7.4)	25 (12.3)	27 (49.1)	9 (6.2)	71 (11.7)			
t(4;14)* present	0	6 (4.4)	42 (20.6)	18 (32.7)	2 (1.4)	68 (11.2)			
1q21+ [†] present	0	53 (39.0)	142 (69.6)	47 (85.5)	13 (8.9)	255 (41.9)			

 Table 3. Distribution of risk factors across R2-ISS stages

*del(17p) and t(4;14) were assessed during screening for ICARIA-MM and IKEMA by a central laboratory with a cut-off of 50% and 30%, respectively

[†]1q21+ (cut-off of 30%) was assessed by a central laboratory during screening for IKEMA and retrospectively for ICARIA-MM ISS, International Staging System; LDH, lactate dehydrogenase; R2-ISS, second revision of the ISS; ULN, upper limit of normal

Results (4/8)

- After a median follow-up duration of 11.6 months (ICARIA-MM) and 44 months (IKEMA), PFS was shorter among patients reclassified as R2-ISS Stage II (HR 1.52; 95% CI 0.979– 2.358), Stage III (HR 2.59; 95% CI 1.709–3.923), and Stage IV (HR 3.51; 95% CI 2.124–5.784) compared with Stage I (Figure 1A)
 - Consistent with the R2-ISS, this validation showed that the median PFS decreased with increasing stage: Stage I, 38.8 months; Stage II, 21.2 months; Stage III, 12.2 months; Stage IV, 7.0 months

Figure 1. Validation curves showing (A) PFS (pooled data from ICARIA-MM and IKEMA). One-sided p-values are presented

CI, confidence interval; HR, hazard ratio; NC, not calculable; PFS, progression-free survival; OS, overall survival; R2-ISS, second revision of the International Staging System.

Results (5/8)

 After a median follow up of 52.4 months (ICARIA-MM) and 44 months (IKEMA), OS was also shorter among patients reclassified as R2-ISS Stage II (HR 1.30; 95%)

CI 0.779–2.184), Stage III (HR 2.77; 95% CI 1.730–4.450), and Stage IV (HR 4.25; 95% CI 2.480–7.269) compared with Stage I (**Figure 1B**)

 Median OS was not reached for both Stage I and Stage II, and was 27.5 months and 11.3 months for Stages III and IV, respectively; there was a clear separation of the curves observed despite Stage I and II medians not being reached **Figure 1.** Validation curves showing (B) OS by R2-ISS stage (pooled data from ICARIA-MM and IKEMA). One-sided p-values are presented

CI, confidence interval; HR, hazard ratio; NC, not calculable; PFS, progression-free survival; OS, overall survival; R2-ISS, second revision of the International Staging System.

 The presence of individual R2-ISS risk factors (compared with their absence) was similarly associated with shorter PFS (Figure 2A) and OS (Figure 2B)

Hazard ratios of (A) PFS by subgroups with individual risk factors (pooled data from ICARIA-MM and IKEMA) Hazard ratios of (B) OS by subgroups with individual risk factors (pooled data from ICARIA-MM and IKEMA)

CI, confidence interval; ISS, International Staging System; LDH, lactate dehydrogenase; PFS, progression-free survival; OS, overall survival; R2-ISS, second revision of the ISS; ULN, upper limit of normal.

Results (7/8)

- Adding Isa to Pd or Kd led to longer PFS compared with receiving doublet therapy for all patients (median 23.9 vs 11.8 months, respectively; HR 0.544 (95% CI 0.436–0.680)
 - A consistent treatment effect was observed across all R2-ISS stages (**Figure 3**)

Figure 3. PFS (Isa-based triplet vs doublet) by R2-ISS stage

CI, confidence interval; d, dexamethasone; HR, hazard ratio; Isa, isatuximab; K, carfilzomib; P, pomalidomide; PFS, progression-free survival; R2-ISS, second revision of the ISS.

Results (8/8)

- Adding Isa to Pd or Kd led to longer PFS compared with receiving doublet therapy for all patients (median 23.9 vs 11.8 months, respectively; HR 0.544 (95% CI 0.436–0.680)
 - A consistent treatment effect was observed across all R2-ISS stages (Figure 3)

Figure 3. PFS (Isa-based triplet vs doublet) by R2-ISS stage

CI, confidence interval; d, dexamethasone; HR, hazard ratio; Isa, isatuximab; K, carfilzomib; P, pomalidomide; PFS, progression-free survival; R2-ISS, second revision of the ISS.

Conclusions

- To our knowledge, this is the first study to validate the R2-ISS in patients with RRMM and in patients treated with an anti-CD38 mAb, using pooled data from two Phase 3 studies (ICARIA-MM and IKEMA)
 - Consistent with the R2-ISS, this validation showed decreasing PFS by stage. A progressive decline in OS and separation of the curves was seen as R2-ISS stage progressed from Stage I to Stage IV; further maturation of IKEMA OS data may yield better discrimination between R2-ISS Stage II vs Stage I
 - More patients with early relapse are classified as R2-ISS Stage III and IV
- Overall, our data show that R2-ISS, as a prognostic scoring system, can be applied to patients with RRMM in the era of novel agents, including mAb
- Isa-based triplet therapy led to improved PFS, regardless of R2-ISS stage, when compared with doublet therapy
 - In this analysis, the IKEMA OS data were not mature

Disclosures

AP: Honoraria – AbbVie, Amgen, BMS/Celgene, GSK, Janssen, Pfizer, Sanofi, and Takeda; Research funding – Takeda; Support for attending meetings and/or travel – Amgen, Janssen. PR: Research funding – Oncopeptides, Celgene/BMS, Takeda, and Karyopharm; Participation on a Data Safety Monitoring Board or Advisory Board – Oncopeptides, Celgene/BMS, Takeda, Karyopharm, Secura Bio, GSK, Regeneron, AstraZeneca, Protocol Intelligence, and Sanofi. JM: Consulting – Amgen, BMS, Janssen, Karyopharm, Sanofi, Takeda. TM: Research funding – Sanofi. MB: Honoraria – Janssen, Sanofi, Takeda; Participation on a Data Safety Monitoring Board or Advisory Board – Amgen, Menarini, Sanofi, Takeda. IS: Honoraria – Amgen, BMS, GSK, Janssen, Karyopharm, Sanofi, Takeda; Participation on a Data Safety Monitoring Board or Advisory Board – Amgen, BMS, GSK, Janssen, Karyopharm, Sanofi, Takeda; Participation on a Data Safety Monitoring Board or Advisory Board – Amgen, BMS, GSK, Janssen, Karyopharm, Sanofi, Takeda; Participation on a Data Safety Monitoring Board or Advisory Board – Amgen, BMS, GSK, Janssen, Karyopharm, Sanofi, Takeda; Participation on a Data Safety Monitoring Board or Advisory Board – Amgen, BMS, GSK, Janssen, Karyopharm, Sanofi, Takeda. MC: Honoraria – BMS, Janssen, Sanofi; Support for attending meetings and/or travel – Janssen, Sanofi. MD: Honoraria – GSK, Janssen, Sanofi; Participation on a Data Safety Monitoring Board or Advisory Board – Amgen, BMS, Celgene, Janssen, Karyopharm, Pfizer; Research funding – Amgen, BMS, Celgene, Janssen, Karyopharm, Pfizer. KB, TF, KT, CT, RZ, SM, ZK, HvdV: employees of Sanofi and may hold stock and/or stock options. PM: Participation on a Data Safety Monitoring Board or Advisory Board or Advisory Board – AbbVie, Amgen, Celgene, Janssen, Sanofi, Takeda.

Acknowledgments: This study was sponsored by Sanofi. We thank the participating patients and their families, and the study centres and investigators for their contributions to the study. Coordination of the development of this poster, facilitation of author discussion, and critical review was provided by Aidee Ayala Camargo, PhD, Sci Comms Director at Sanofi. Medical writing support was provided by Erin Burns-Tidmore, PhD, of Envision Pharma Group, funded by Sanofi.